
UCRL-CONF-212695

Monte Carlo Particle Transport:
Algorithm and Performance
Overview

N.A. Gentile, R.J. Procassini, H.A. Scott

June 6, 2005

5 Lab Conference on Computational Hydrodynamics and
Transport
Vienna, Austria
June 20, 2005 through June 23, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Proceedings from the 5LC 2005

Monte Carlo Particle Transport:
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N. A. Gentile, R. J. Procassini and H. A. Scott
Lawrence Livermore National Laboratory, Livermore, California, 94551

Monte Carlo methods are frequently used for neutron and radiation trans-
port. These methods have several advantages, such as relative ease of
programming and dealing with complex meshes. Disadvantages include
long run times and statistical noise. Monte Carlo photon transport calcu-
lations also often suffer from inaccuracies in matter temperature due to
the lack of implicitness.  In this paper we discuss the Monte Carlo algo-
rithm as it is applied to neutron and photon transport, detail the differ-
ences between neutron and photon Monte Carlo, and give an overview of
the ways the numerical method has been modified to deal with issues that
arise in photon Monte Carlo simulations.

Neutron Monte Carlo Transport
The Monte Carlo method of simulating particle transport is a statistical approach to

“solving” the linearized Boltzmann equation, which is shown below for neutrons:

1
v
∂r , E , , t 

∂ t
 Temporal Streaming

∇⋅r , E , , t   Spatial Streaming
a r , E r , E , , t  = Collisional Absorption  1

∫E '∫'  sr , E ' ,'  E ,r , E , , t d' dE '  Collisional Scattering

E ∫E ' E '  f r , E ' ∫' r , E , , t d' dE '  Collisional Fission Source
S ext r , E , , t  External Source

where r , E , , t   is the angular flux, a r , E   is the macroscopic cross section for

particle absorption, sr , E ' ,'  E ,  is the macroscopic cross section for particle

scattering,  f r , E '   is the macroscopic cross section for particle production from fis-
sion, E   is the secondary particle spectrum emitted from the fission process, E

'   is
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the average number of particles emitted per fission, S ext r , E , , t   is an external
source, r  is the spatial coordinates, E  is the energy,   is the angular direction and t
is time.

While the spatial domain is divided into cells or regions, and energy may be divided
into groups, this method does not employ a continuum approach to solve this integro-dif-
ferential equation (Equation 1), as is the case in deterministic transport methods, such as
the S N  or P N  methods.  In many transport applications, each Monte Carlo simulation
particle represents an ensemble of physical particles.  The essence of the Monte Carlo
method of particle transport is to follow, or track, the trajectory of individual particles
through this seven-dimensional phase space in an analog fashion.  The trajectory, or track,
of each particle through phase space is comprised of several segments, each of which is
terminated by a discrete event.

In this approach, particles undergo a series of events during tracking.  The first of
these is particle streaming to the end of the time step, known as a census event, which
represents the Temporal Streaming term (see Equation 1).  The next event is streaming to
the boundary of a neighboring cell, region or system boundary, known as a facet crossing
event, representing the Spatial Streaming term.  A special subcase is streaming to the sys-
tem boundary resulting in leakage from the system, known as an escape event.  The inter-
action of a particle with an atom or nucleus in the background medium is known as a col-
lision event, representing the Collisional Absorption or Collisional Scattering terms.  A
special subcase of collision absorption are collisional interactions that result in the pro-
duction of secondary particles, which is represented by the Collisional Fission Source
term.  Two additional events are possible during the transport of charged particles.  These
particles are assumed to undergo continuous slowing down and deflection due to small-
angle Coulomb scattering off the of the electrons in the background medium.  These addi-
tional events are streaming to the lower-energy group boundary or to the thermal energy
of the medium, known as an energy-boundary crossing or thermalization event, respec-
tively.  Note that the proceeding discussion, while focused on neutron transport, is
broadly applicable to transport of all types of particles, although additional or alternate
physical interaction mechanisms may be involved.

This event-based particle tracking scheme is illustrated in Figure 1 for neutral parti-
cles being transported through a mesh-based problem geometry.  This figure shows a two-
dimensional mesh of 6 x 4 = 24 zones with three materials distributed throughout the
mesh.  Three individual track segments are shown, along with the distances to each of the
terminating events. Note that the segment tracks are actually colinear, but have been sepa-
rated for illustrative purposes.  The Monte Carlo method of particle transport selects the
shortest event distance as the terminating event of the segment.  For the segment in the
lower left corner of the figure that starts in Material A, the distances to census (shown in
blue) and collision (shown in green) would take the particle outside of the extent of the
current zone.  As a result, the shortest distance to cross a facet into a neighboring zone,
based upon the direction of particle travel (shown in red), is the terminating event for that
segment.  For the segment in the center of the figure that starts in Material B, the distance
to collision is shorter than either the distance to facet crossing or census, hence the parti-
cle will undergo a collision in the current zone, but as shown in the figure, not necessarily
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in the material that the segment began in.  For the upper-right segment in the figure,
which starts in Material C, the distance to the end of the time step (census) is the shortest,
such that the particle will be placed back into the particle “vault” for tracking in the next
cycle.  Particles are typically tracked in a three-dimensional Cartesian space which is
independent of the problem geometry or mesh.  In this case, a neutral particle travels in a
straight line until it intersects a facet/surface of first order (plane), second order (sphere,
cylinder, cone, ellipsoid), etc, which forms the boundary of a zone or regions, or the exte-
rior of the system.

Some additional features of the Monte Carlo particle transport method are as follows.
While the particles may have discrete but continuously-varying energies, the multigroup
treatment of energy employs cross sections which are assumed to be constant within a
group.  Collisions are treated as point events, such that only the direction of the particle is
changed, and not its spatial location.  Collisions may result in the production of secondary
particles via transmutation reactions.  If this occurs, then those secondary particles which
are being tracked (say, neutrons and gammas) are placed in the particle “vault” for
subsequent tracking, while those secondary particles which are not being tracked (say,

Gentile, N.A. et al.

Figure 1.  Track segments from three individual  neutral particle trajectories
through a two-dimensional mesh that contains three materials.  For each segment,
the distances to census (blue), facet crossing (red) and collision (green) are shown
separated for illustrative purposes.  The method selects the shortest of the three
event distance for each segment.
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protons) are assumed to be locally deposited, in terms of both mass and energy.
The approximation of the flux in a given zone  z   and energy group g   is sum of

the particle  j   path lengths L  through the volume V z  in a given time step  t  :

z , g = ∑
j W j L j , g

V z  t  2

These fluxes are multiplied by the number densities ni of background isotopes i   and
the relevant cross sections  r , i  to produce rates of energy deposition and isotopic pro-
duction/depletion:

Rr , z , g = ∑
i
z , g ni , z r , i , g 3

Each Monte Carlo simulation particle is defined by a set of  attributes, which can
include spatial coordinates: x , y , z  , velocities or direction cosines v x , v y , v z  or
cos , cos , cos , kinetic energy E , weight (defined as the the ratio of the
number of physical particles represented by each simulation particle) W = N phys / N sim
, the time to census t cens , the number of mean-free paths remaining before a collision
must be enforced N mfp , the random number seed Rseed  (for applications using per-parti-
cle seeds), and a number of miscellaneous attributes including the number of collisions
that the particle has undergone, last event the particle experienced, the breed particle (de-
scribing the material it was created in, the process by which it was created, etc.), the spa-
tial domain, cell, facet, etc.  These particles are usually tracked in the seven-dimensional
phase space comprised of three spatial coordinates x , y , z  , three velocities
v x , v y , v z  or two-directions   and energy E  , and time t  .

Monte Carlo Algorithms for Calculating Criticality Eigenvalues
Two eigenvalue forms of the Boltzmann transport equation are typically used to define

the criticality of a system.  The first is the /k eff   form which describes a balance be-
tween neutron production and removal in a static, source-free multiplying medium:

where k eff  is the balance parameter which is used to determine if the system is subcritical
k eff  1 , critical k eff = 1  or supercritical k eff  1 .  The second is the /v 
“static” form, which is derived from the following separability of variables ansatz: 
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r , E , , t  = r , E , t  5

and the assumption that the system has “evolved” to its fundamental eigenmode (the
eigenmode with the largest eigenvalue, such that all other eigenmodes with smaller
eigenvalues have been diminished to zero):

 t  = 0e t 6

to give:

∇⋅r , E , , t   a  /v r , E , , t  =

∫E '∫'  sr , E ' ,'  E ,r , E , , t d' dE '  7

E ∫E ' E '  f r , E ' ∫' r , E , , t d' dE '

where   is the parameter that describes the logarithmic growth rate of particles in the
system.  For a subcritical system   0 , the /v   terms leads to “time production” of
particles, while for a supercritical system, the /v   terms leads to “time absorption” of
particles (the term “time” is used because the used of   are inverse time).

Some static algorithms for calculating the k eff  or   eigenvalues of a system include:

(1)The Static k method, which “solves” the /k eff   form of the Boltzmann equa-
tion by iterating to convergence over many generations.

(2)The Static   method, which  “solves” the /v   form of the Boltzmann
equation by adding “time absorption” (“time production”) of neutrons in super-
critical (subcritical) systems and iterating to convergence.

(3)The Pseudo-dynamic   method, which “solves” the Boltzmann equation for a
fixed background medium, evolving the neutron distribution to convergence in
time over many settle cycles.

These static k eff  and   eigenvalues are calculated from iteration or cycle averaged val-
ues of the neutron production P  , absorption A , leakage L  and removal lifetime
rem  via:

and

       
Averaged quantities are employed in the calculation of the static k eff  or   eigenvalues

Gentile, N.A. et al.

k eff =
〈P 〉

〈A〉  〈L〉
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〈rem〉 〈P 〉
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− 1=  1

〈rem〉k eff − 1 9
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in order to reduce the stochastic noise by averaging over many settle iterations/cycles.

A dynamic algorithm that is used to calculate the   eigenvalue of a system is:

The Dynamic   method uses the separability of variables ansatz (Equation 5) and
fundamental eigenmode assumption (Equation 6) to give   at cycle n :

where N tn  is the particle population at the end of cycle n .

The logarithm of the population ratio used in the calculation of the dynamic   eigenval-
ue can lead to increased stochastic noise.  This occurs as  t  0 , which results in
N tn  N tn−1  , and hence ln N tn/N tn−1  0 .

Accuracy Considerations of Monte Carlo Calculations
Since the Monte Carlo method does not solve the Boltzmann equation via use of nu-

merical differences and quadratures, it does not incur many of the accuracy and stability
limitations which are faced by deterministic methods such as S N  or P N .  However,
there are several issues which need to be considered when modeling particle-transport
with the Monte Carlo method.

Given enough particles the Monte Carlo method is capable of sampling all of the
seven-dimensional phase space x , y , z ,cos , cos , cos , E , t   spanned by the
Boltzmann equation.  However, since it is a statistical method, there is no such practical
concept as “enough particles”.  The calculated results should always be accompanied by
an estimate of the error which is based upon the number of particles used in the calcula-
tion.  In addition, accurate modeling of collision interaction and flux attenuation requires
zone spacings comparable to, or smaller than, a mean-free path length  x ≤ mfp .  Fur-
thermore, the multigroup energy treatment limits the resolution of rapidly-varying cross
section structures, such as resonances, lines or edges, which leads to inaccuracies in the
calculation of resonant self-shielding.  Lastly, one should be aware that approximations
may be used , such as equally-probable bins, when sampling the energy and angle of sec-
ondary particles emerging from collision events.

With regard to the particle counts required for reasonably accurate simulations, the
following guidelines can be used.  The number of simulation particles N sim  required
for static k eff  or   eigenvalue calculations can be as low as 103  to 105 ,since the
production, removal and lifetime components used to calculate the eigenvalues are
averaged over many settle iterations/cycles, and because static eigenvalues are global
quantities which do not require large per-zone particle counts.  In contrast, the number of
simulation particles N sim  required for time-dependent depletion calculations (such as a
reactor depletion calculation) must be significantly larger, of order 105  to 109 , since
energy deposits and isotopic depletion/production require a sufficient number of particles
per zone, of order 10 to 1000, in order to reduce statistical fluctuations in those quantities.

Gentile, N.A. et al.
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Implicit Monte Carlo

Photon Monte Carlo differs from neutron Monte Carlo in two ways. First, photons
always move with speed c, instead of with a spectrum of velocities as neutrons do. This is
a minor difference that makes tracking the particles in Monte Carlo photon simulations
slightly easier. The second difference is much more important. This difference is that the
absorption and emission – the coupling – of photons to the matter temperature has to be
simulated also. This coupling can be very non-linear and can make the solution of photon
Monte Carlo difficult when matter and radiation are near equilibrium. When this occurs,
absorption and emission are both very large and nearly equal. The changes in the
radiation field and matter energy are functions of the small difference between large
quantities. This causes the method to exhibit large fluctuations and require very small
time steps (Fleck, 1963).

These symptoms result from a lack of implicitness in the photon Monte Carlo
solution technique. The absorption of energy from a photon by matter is equal to e-s d,
where d is the distance traveled by the photon. This quantity is calculated for each
particle in the simulation at many times during each time step. In effect, it is centered in
the middle of the time step.

 The emission from the matter is proportional to s c aT4 V Dt. Here s is the Planck
mean opacity, c is the speed of light, T is the matter temperature, V is the volume, and Dt
is the time interval under consideration. The dependence of the emission on the fourth
power of the temperature makes the emission highly nonlinear in T. The matter
temperature is known only at the beginning of the time step. Thus the emission term is
centered at the beginning of the time step.

The difference between the centering of these two nearly equal terms is the cause of
the problems photon Monte Carlo has near equilibrium. The different centering means
that the emission that is calculated for a time step does not reflect the heating of the zone
by radiation during the time step. If an initially cold, opaque zone is exposed to a large
incoming flux of radiation, the zone will absorb a great deal of energy, but it does not
radiate accordingly. The temperature will increase by too large an amount. On the next
time step, the zone, which is too hot, will radiate too much energy, since T is too large.
This leads to large fluctuations in the matter temperature unless very small time steps are
taken. The value of Dt must be small enough that the matter temperature anywhere in the
problem does not change very much during any time step.

In order to remove this restriction on the time step, Fleck and Cummings developed
the Implicit Monte Carlo method (Fleck and Cummings, 1971). This technique uses an
estimate of the future matter temperature derived from the matter energy equation in the
emission term of the radiation transport equation. It should be emphasized that this is not
an extrapolation of the matter temperature. It is an expression for the future temperature
as a function of the current temperature, the opacity, the equation of state of the material,
and the size of the time step. This expression is inserted into the transport equation. When
the terms in this new equation are grouped together, the effect is that the amount of
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absorption and emission is reduced, and a new term that simulates isotropic scattering is
added.

The effect is that some fraction of the absorption opacity is replaced by a scattering
opacity. This change has a physical interpretation. In thermal equilibrium, photons are
absorbed and then quickly re-emitted. In photon Monte Carlo simulations, the absorption
is simulated accurately, but the re-emission is not, because the initial matter temperature
was used to calculate the emission. Implicit Monte Carlo simulates the absorption and
subsequent re-emission by a scatter. This scattering is called effective scattering, to
differentiate it from physical scattering that may also be occurring in the simulation.
Adding this effective scatter to the Monte Carlo simulations almost always allows much
larger time steps to be taken. However, the replacement of absorption with effective
scattering can lead to large simulation times, as photons undergo many computationally
expensive scatters instead of being quickly absorbed.

In the next section, we will examine the equations of Monte Carlo photon transport
and show how the algorithm of Fleck and Cummings is developed. In the next section we
will give an example problem that demonstrates that it removes the time step restriction.

The Equations of Implicit Monte Carlo
Radiation transport problems require the solution of two coupled equations:

Here I(x,W,t,n) is the  radiation specific intensity, with cgs units erg/(cm2 Hz steradian
s); e(x,t) is the matter energy density, with cgs units erg/cm3; sa (x,t,n) is the absorption
opacity, with cgs units cm-1; ss is the scattering opacity; sP is the Planck mean opacity;
b(n,T) is the normalized Planck function; SI represents photon sources, for example
lasers; and Se represents thermal sources, for example, chemical reactions. Coupling
between I and e is through T4 and sa terms. The aT4 term in the transport equation is a
source from the matter into the radiation field, and describes thermal emission. The aT4

term in the matter energy equation is the corresponding sink, describing energy lost by
the matter.

Implementing the Implicit Monte Carlo algorithm has 3 steps:

• The matter energy equation is manipulated to get an expression for the time
derivative of T4

• This derivative is approximated to get an expression for T4 at the end of the
time step in terms of current T, absorption, etc.

• This expression for T4 is substituted into the transport equation and the matter
energy equation

† 

1
c

∂I
∂t

+ W•—I = - s s + s a( )I +
1

4p
cs aaT 4b(n,T) + s sI dn dW +Ú SI (1)

† 

∂e
∂t

= s aI dn dW -scaT 4Ú + Se (2)
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 The result of this procedure is a pair of altered equations for I and e, not the same
equations with a different value for T in the emission term. These new equations for I and
e are usually more stable than the original set.

This procedure is described in detail in (Fleck and Cummings 1971). A brief
description will be provided here. First, we define the radiation energy density er = a T4.
Then we define the quantity b = der/de, which, by the chain rule, is equal to 4aT3/(r cV).
Here, cV is the heat capacity. Defining these quantities allows us use Eq. 2 for the time
derivative of e to get a time derivative of er:

† 

The second step is to use this value of the time derivative to estimate the value of er at
the end of the time step. We do this by forward differencing the time derivative on the
left side of the equation, using the (unknown) end of time step value for er on the right
side, and using the values for the other quantities b, T etc at the beginning of the time
step. This gives us an equation we can solve for the end of time step radiation energy
density. The result is

Here, the superscript n denotes values at the end of time step n, and n+1 denotes end
of time step values. The third step in the Fleck and Cummings algorithm is to use this
estimate for er

n+1 in the thermal source term (sP c aT4) in the transport equation Eq. 1 and
the energy sink term of the matter energy equation Eq. 2. The results are

and

The quantity f = 1/(b c sP Dt) arises several times in this equation. This quantity is often
referred to as the “Fleck factor”. It takes on values between 0 and 1.

Equations 5 and 6 are the new equations that the IMC method solves. There are
several differences from the original equations  Eq.1 and Eq.2. The thermal emission in
both equations has been reduced by the factor f, because f now multiplies sa. Scattering
has been added with opacity (1-f) sa. This scattering is isotropic in direction and has a
frequency distribution given by the Planck function. Thus it resembles thermal emission
it replaces.  A fraction (1-f) of the matter energy source Se has been removed from the
matter source and added to the photon source. This new term in the modified transport

† 

∂er

∂t
= b

∂e
∂t

= b s aÚ I dWdn - cs Per + bSe (3)

† 

er
n +1 =

1
1+ bcs PDt

er
n +

bcDt
1+ bcs PDt

s aÚ I dWdn +
1

1+ bcs PDt
bDtSe (4)

† 

1
c

∂I
∂t

+ W•—I = - s s + s a( )I +
1

4p
fcs abn aT 4b(n,T)

n

+
1

4p
(1- f )s ab(n,T) s aI dn dW +Ú

+ s sI dn dW +Ú 1
4p

(1- f )s ab(n,T)
s P

Se + SI (5)

† 

∂e
∂t

= fs aI dn dW -Ú fcs abn aT 4b(n,T)
n

+ fSe (6)
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equation represents thermal emission from the matter heated by the matter source during
the time step.

When f approaches 1, the pair Eqs. 5 and 6 approaches the original set of Eqs. 1 and
2. This occurs under several circumstances:

• The time step Dt is small. In this case, the temperature changes very little
between time n and time n+1.

• sP is small. If the material has a small Planck mean opacity, then the coupling
between the matter and radiation is small, and the matter temperature is not
changing rapidly.

• cV is large, making b small.  When the heat capacity is large, the matter
temperature does not change much even if the material absorbs a large amount
of energy.

In the other limit, f is small, approaching zero. This happens when sP or Dt is large, or
cV is small. Physically, this situation occurs when the matter and radiation are strongly
coupled. The matter temperature and radiation temperature should be very nearly equal,
and any increase in the matter temperature would result in the emission of photons to
maintain Tm @Tr. Particles in the simulation scatter many times while depositing very
little energy, and the emission term in Eqs. 5 ands 6 is small because f sa is near zero. In
the original Monte Carlo algorithm (henceforth MC), strong coupling lead to oscillations
unless the time step was very small. In IMC simulations, the time step can remain
relatively large, but the computational expense of simulating the many scatters can be
prohibitive.

In the next section, we will show that the IMC algorithm, which solves these new
equations allows us the run a test problem stably with a much larger time step than the
MC algorithm described in (Fleck 1963). This original algorithm is equivalent to running
IMC with f set to 1.0. We will also show problems for which the change of absorption
into scattering causes an IMC simulation to take a prohibitive amount of computer time.

Results of Implicit Monte Carlo
The first test problem we will examine is a simple one-dimensional test. A material

with an initial temperature of 0.01 keV is heated at x = 0 with a temperature source of 1.0
keV. The material has an ideal gas equation of state with cV = 1.0x1014 erg cm-3 keV-1.
The absorption opacity is 100 cm-1. The density is fixed at 1.0 gm cm-3. The simulation
takes place on a mesh of 200 zones each with Dx = 0.01 cm.

The diagnostic in the test is the temperature of the first zone. In nature, this
temperature would rise smoothly from the initial value of 0.01 keV to the source
temperature 1.0 keV without overshooting. In a simulation, we would like to reproduce
this behavior. For small values of Dt we will, but for larger values we will see overshoots.

In Fig. 1 we compare the behavior of MC and IMC by plotting the temperature in the
first zone for the first ten time steps in the simulation. When a Dt of 1.0x10-4 ns is used,
MC and IMC produce the same answer. When Dt is raised to 2.5 x10-4 ns, MC shows a
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slightly faster rise in the temperature. When Dt is raised to 5.0 x10-4 ns, the Monte Carlo
solution begins to oscillate, and, on the eighth cycle, yields a temperature that is less than
zero, at which point the simulation fails.  With this value for Dt, the IMC simulation is
still stable. With a Dt of 1.0 x10-1 ns, IMC shows a slight overshoot in the temperature,
but it rapidly relaxes to the final, correct value of 1.0 keV. On this test problem, IMC is
capable of running with a time step 500 times greater than the one that causes the MC
simulation to fail.

Figure 1. Plot of Temperature vs. time step number for various values of Dt for both
IMC and MC. Values of Dt in ascending order for pairs of curves on the plot are
1.0x10-4 ns, 2.5 x10-4 ns, 5.0 x10-4 ns, and 1.0 x10-1 ns.

 The second test problem is a two-dimensional test known as the crooked pipe. This
test takes place on an RZ mesh. An initially cold region with small opacity is heated with
a time-independent temperature source. A region with large opacity impedes the radiation
flow, which travels along a crooked path around the large opacity region while heating it.
The diagnostic quantities are the temperatures at five points in the small opacity region.
This test was developed by (Graziani and LeBlanc 2000). Details on the mesh and IMC
simulations are given in (Gentile 2001).

This problem has a large amount of material with a large opacity that becomes hot.
This causes f to become very small – on the order of .001 – in a significant part of the
problem. As the opaque material becomes hot, many effective scatters take place, and the
simulation time becomes large.

Fig. 2 shows the temperature vs. time for two IMC simulations. One ran on a two-
dimensional RZ mesh and the other on a three-dimensional mesh that was one zone thick
in the angular direction (that is, a wedge). It also shows the results of an SN simulation
(Nowak and Nemanic 1999).

All three codes show good agreement. However, the run time for the IMC simulations
was prohibitive. The three-dimensional run took over 159 hours on one 533 MHz. DEC
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alpha processor. This test problem demonstrates that IMC, while accurate, can have very
large run times on problems with f near zero in large regions.

Figure 2. Plot of Temperature vs. time step number for five points in the crooked
pipe test problem. IMC and SN both produce very similar results, but IMC
computational expense is large. Time axis units are 10-8 s = 10 ns.

Research Directions For Monte Carlo Radiation Transport
Hybrid Methods

IMC run times in opaque systems can be improved by using the diffusion equation. If
there are many effective scatters in a zone, the photons execute long sequences of random
walks. This results in the particles losing all angular information, for example, their initial
direction. When the scattering mean free path, either real or effective, is small compared
to the length scale on which the problem quantities vary, the diffusion equation is a good
approximation to the transport equation (Larsen 1980). This suggests that we can use
solutions to the diffusion equation to accelerate IMC in those regions where it is most
computationally expensive.

One method, referred to as the “random walk” procedure, was developed by (Fleck
and Canfield 1984). In this procedure, a solution of the diffusion equation in a sphere is
used to advance selected particles inside a zone. A sphere is centered on a particle, with
the radius chosen such that the sphere is entirely contained in the zone. This is to ensure
that there are no discontinuities in material properties inside the sphere. The solution of
diffusion equation inside the sphere is expressible as an infinite series, the value of which
can be tabulated. This solution is interpreted as a probability distribution for the location
of the particle. Sampling from this probability distribution allows the particle to jump in
one step to a new location, rather than undergoing many effective scatters.

Fleck and Canfield showed that this procedure could decrease the computational
expense of an IMC simulation with opaque material by a factor of approximately 5. A
drawback to the method is that the calculation of the sphere for each particle is expensive.
Advancing a particle one random walk jump is thus much more expensive than
performing one IMC effective scatter, especially on complicated meshes. So the problem
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must be such that many effective scatters would take place in each zone for the “random
walk” algorithm to make the problem run faster.

Another way to use solutions to the diffusion equation is to invoke what are called
hybrid techniques. Hybrid techniques solve the diffusion equation by traditional linear
systems methods in opaque regions of the problem, and IMC in others (see Gentile 2000
for a summary.) In hybrid techniques, diffusion is used in opaque regions where IMC is
slow, and IMC is used in non-opaque regions where diffusion is inaccurate.

Hybrid techniques require that each method provide boundary conditions for the other
method where the opaque and non-opaque regions meet. IMC particles entering the
diffusion region are converted into an approximate boundary flux to provide a Marshak-
type boundary condition for diffusion. The solution of the diffusion equation yields a
flux, which is interpreted as a source of particles into IMC region.

Fig. 3 shows the results for a hybrid IMC/diffusion calculation for the crooked pipe
test problem compared to IMC and diffusion results. This is the same quantity (matter
temperature) at the same points plotted in Fig. 2. The hybrid method produces results
which are very similar to the pure IMC and SN results. As mentioned above, the pure
IMC simulation took 5.73x105 s (about159 hours). The hybrid run took 2.42x104 s. This
is a decrease in computational cost by a factor of greater than 23 (Gentile 2001).

Figure 3. Plot of Temperature vs. time step number for five points in the crooked
pipe test problem. IMC, the IMC/IMD hybrid method, and SN all produce very
similar results. Time axis units are 10-8 s = 10 ns.

Hybrid methods can yield large decreases in run times on some problems. However,
they have several drawbacks. The transport equation gives an outgoing flux and requires
an incoming flux as a boundary condition, while the diffusion equation requires a total
flux as a boundary condition.  Thus the coupling between IMC and diffusion is
approximate. Discontinuities in the solution at the boundaries, as well as instabilities, can
occur. In addition, hybrid methods are very difficult to implement, especially on
complicated meshes.



Symbolic Implicit Monte Carlo 
 
The IMC method of Fleck and Cummings improves the stability of the Monte Carlo 

method for radiation transport considerably.  However, since β remains fixed, the 
resulting set of equations is a linearized approximation to the full nonlinear equations, 
akin to the linearized equations commonly used with deterministic methods.  In the 
absence of some convergence procedure, timesteps large enough for the temperature to 
change significantly will produce linearization errors and, potentially, instability. 

An asymptotic analysis by Densmore and Larsen (2004) demonstrates that the Fleck-
Cummings method becomes inaccurate for large timesteps, and does not correctly yield 
the diffusion limit for very small photon mean free paths.  A modification of the method 
due to Carter and Forest (1973) produces the diffusion limit, but only for small timesteps, 
as it shares the linearized character and concomitant errors of the Fleck-Cummings 
method. 

A method for achieving an implicit non-linear solution, called Symbolic Implicit 
Monte Carlo (SIMC), was first proposed by Brooks (1989) in the context of line radiation 
transport.  N’kaoua (1991) applied this method to thermal photon transport.  In this 
technique, the weights of the particles are treated as unknowns and are carried 
symbolically through the tracking procedure.  Photons emitted in a zone during a 
timestep are given weights proportional to T4.  After transporting the photons, the 
material energy equation becomes a non-linear set of equations for the updated 
temperatures.  This set of equations produces a fully implicit solution for the 
temperatures, remains stable for very large timesteps and properly captures the diffusion 
limit.  However, the equations couple the temperatures in all zones, with the effective 
bandwidth determined by the timestep and mean free paths.  The need to invert a 
(potentially-) full matrix presents a difficulty in scaling to very large (or finely zoned) 
systems.  

 
Difference Formulation 
 
The main impediment to efficiently obtaining accurate solutions with either IMC or 

SIMC is the slow decrease of statistical noise with the number of photons, or 
alternatively, the computational expense of tracking through opaque regions where 
photons undergo very many scatters.  Random walk approaches and hybrid methods 
attempt to address this problem by increasing the efficiency of the transport method by 
utilizing the diffusion-like behavior of photons in opaque regions.  A recent alternative 
approach, the difference formulation, transforms the equations so that Monte Carlo 
transport naturally becomes more efficient in opaque regions (Szoke and Brooks, 2005). 

The difference formulation casts the radiation transport equations in terms of the 
difference D between the intensity and its equilibrium value, 
  ( , ; , ) ( , ; , ) ( , ( , ))D t I t B T tν ν ν≡ −x Ω x Ω x  
The transport equations for the difference intensity, 

  1 1
a a

D BD D B D d d S
c t c t t ε

∂ ∂ ∂εσ σ ν
∂ ∂ ∂

+ Ω •∇ = − − + Ω •∇ = Ω +∫  

are completely equivalent to the original equations and obey equivalent boundary and 
initial conditions.  Scattering poses no difficulties, but the discussion here omits 



scattering for simplicity. 
Since the transformed equation is equivalent to the original, there is no obvious 

advantage to either formulation for deterministic solution methods (although the differing 
characters of the source terms may lead to distinct numerical behaviors in certain 
situations).  However, in an opaque region, both the difference intensity and the gradient 
of the Planckian become small.  In particular, the stiff balance between emission and 
absorption is replaced by small terms.  Therefore, one might expect a Monte Carlo 
transport treatment to benefit greatly from the difference formulation in these regions. 

Results to date, which much still be classified as preliminary, have borne out this 
expectation.  Brooks, et al (2005) have implemented the difference formulation with 
SIMC for thermal photon transport.  They consider a test problem consisting of a uniform 
slab with a frequency-independent opacity and constant specific heat that is illuminated 
from the left side with a 1 keV blackbody radiation field.  Figure 4 shows the steady-state 
solutions for the material temperature for four different optical thicknesses, 1, 10, 100 
and 1000 mean free paths.  The standard deviations in the results, calculated both with 
the standard formulation and the difference formulation are also shown.  The standard 
deviations are multiplied by appropriate factors to make them easily visible on the 
figures. 

The two formulations produce the same results (within statistical noise), but the 
standard deviations in the difference formulation results are smaller by a factor that 
decreases as the optical thickness increases.  The noise in the standard formulation 
increases dramatically with optical depth, while the noise in the difference formulation 
does not.  We note that these results were obtained with an implementation assuming 
piecewise constant material properties, which does not achieve the diffusion limit for 
zone sizes larger than a mean free path.  Accordingly, these runs used zoning sufficiently 
fine to resolve a mean free path.  An implementation with piecewise linear properties is 
under development. 

The particle counts in these calculations were set so that the Monte Carlo run times 
were the same for the two methods, and 100 runs with different random number seeds 
were done for each formulation.  The computational advantage of the difference 
formulation compared to the standard formulation is shown in Figure 5, where this 
quantity is defined as the square of the ratio of the standard deviations of the sets of runs. 



 
Figure 4.  Temperature distribution in a slab in steady state.  The total optical 

depth of the slab is 1 in (a), 10 in (b), 100 in (c) and 1000 in (d).  The standard 
deviation of the difference formulation is denoted by diamonds and that of the 
difference formulation by triangles.  Note the change in their relative scale with 
optical depth.  Reproduced from Brooks et al (2005). 

 
This implementation used SIMC for implicitness and stability.  However, the 

difference formulation is independent of any particular discretization or solution method.  
Similarly, it does not mitigate deficiencies in the solution method, whether deterministic 
or Monte Carlo.  An implementation using IMC rather than SIMC also shows improved 
performance / decreased noise, but retains the timestep limitations of IMC. 

The difference formulation enjoys a significant performance advantage over standard 
Monte Carlo in opaque regions.  Experiences to date also show comparable performance 
to standard Monte Carlo in transparent regions, leading to the possibility of reducing 
statistical noise by simply using the difference formulation over the entire problem 
domain. 



τ = 100

τ = 1000

τ = 10

τ = 1

 
Figure 5.  The relative computational advantage of the difference formulation 

compared to the of the standard formulation, plotted as a function of position for 
various optical depths of the slab.  Reproduced from Brooks et al (2005). 
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